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The linear algebraic equation .4x = b with tridiagonal coefficient matrix A is solved by analytical matrix inversion. An explicit 
formula is known ifA is a Toeplitz matrix. New formulas are presented for the following cases: (1)A is of Toeplitz type except 
thatA(1, 1) andA(n, n) are different from the remaining diagonal elements. (2)A isp-periodic (p > 1), by which is meant that 
in each of the three bands ofA a group ofp elements is periodically repeated. (3) The tridiagonal matrixA is composed of periodic 
submatrices of different periods. In cases (2) and (3) the problem of matrix inversion is reduced to a second-order difference 
equation with periodic coefficients. The solution is based on Floquet's theorem. It is shown that forp -- 1 the formulae found 
for periodic matrices reduce to special forms valid for Toeplitz matrices. The results are applied to problems of elastostatics and 
of vibration theory. © 1998 Elsevier Science Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

The subject of this paper is systems of linear equations of the form 

~i_lXi_l "l'OLiXi't''[i3Ci+l -~b i ( i = !  . . . . .  n; x o = xn+ I = 0 )  (1.1) 

with real or complex coefficients. The matrix form is,4x = b with a symmetric or asymmetric tridiagonal 
matrixA. Such systems of equations arise in many fields. In the simplest case the matrix elements are 
a i ~-- a ,  13i ~ 13, ~/i ~ ~/. S u c h  matrices are called (tridiagonal) Toeplitz matrices. A Toeplitz matrix will 
be called perturbed if the "boundary" elements al  and an are different from a. These boundary elements 
reflect boundary conditions of the mechanical system under investigation. Mechanical systems which 
are composed of periodically repeated subsystems give rise to periodic matrices with elements a;+p = 
ai,  ~i+p -~- ~i, ~i+p ~ 7i (t 9 > 1). 

In Section 2 the elements of the inverses of tridiagonal matrices are expressed in terms of continuants, 
i.e. of  determinants of tridiagonal submatrices ofA. Continuants are solutions of a linear second-order 
difference equation. The coefficients of this equation are the diagonal elements ai and the products 
8i = ~iYi of  the off-diagonal elements. From this it follows that the inversion of an asymmetric matrix 
is not more difficult than that of a symmetric matrix. Throughout this paper 5; = 13iY ,- of the off-diagonal 
elements. From this it follows that the inversion of an asymmetric matrix is not more difficult than that 
of a symmetric matrix. Throughout  this paper 8 i ~ 0 (i  ---- 1 . . . . .  n - 1) is assumed, since otherwise the 
problem of inversion can be reduced to the inversion of smaller tridiagonal matrices. 

In Section 3 difference equations with constant coefficients ai -= a, 8 i ~ 8 are resolved explicitly. 
With these solutions explicit expressions are obtained for the inverse of Toeplitz matrices and of perturb- 
ed Toeplitz matrices. With the exception of some formulae related to perturbed matrices this materials 
is well known. New results are obtained in Sections 4 and 5. In Section 4 difference equations with 
p-periodic coefficients ai+ p ~- ai,  8i+ p -~ 5 i are investigated. Explicit solutions are based on Floquet's 
theorem. The result for p-periodic coefficients is identical with that for constant coefficients i fp  is set 
equal to 1. In Section 5 the results are further generalized to tridiagonal matrices with submatrices of 
different period lengths. In Section 6 the results are applied to elastostatics and to vibration problems. 

Tridiagonal matrices and generalizations thereof have been studied in many papers [1-7]. In [5] 
inverses of periodic tridiagonal matrices are discussed without, however, giving closed-form expressions 
of the kind obtained in the present paper. 

fPrikL Mat. Mekh. Vol. 62, No. 4, pp. 618--632, 1998. 
SThis paper is dedicated to Professor Erwin Stein (Hannover) on the occasion of his 65th birthday. 
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2. THE I N V E R S E  MATRIX E X P R E S S E D  IN T E R M S  OF C O N T I N U A N T S  

Let ui (i = 1, , n )  be the determinant of the tridiagonal submatrix with elements A. k 
(j, k = 1 . . . . .  i) of the coefficient matrixA. Following the notation in [1] ui is called the ith contmuant 
of A. Furthermore, let t) i (i = 1 . . . . .  n) be the ith continuant of the transpose of A about its secondary 
diagonal. From these definitions it follows that Un -- t~n = det A. I rA is persymmetric (symmetric to 
its secondary diagonal) then oi = ui (i = 1 , . . . ,  n) .  

The element (A-1)ii ( i , j  = 1 . . . .  , n )  of the inverse of an arbitrary matrixA is Cij/u n where C U is the 
cofactor o f  Aji. It is (~1) '-j times the determinant of the submatrix of A which remains after deleting 
rowj  and column i. For the matrix in Eq. (1) and for i > j the cofactor is 

C~ = (-1) '-~ 

' - '  IIA,-,II j+! 
Tj-I 
I~j ctj+l Tj+I 

~i-3 0~i-2 Ti-2 

~i-2 O~i-I 

~i-I 

i-I i+1 

¥i 

118,,-,ll 

(i > j )  

[Aj_I] and [Bn_i] are the matrices with elements akl (k, l = 1 . . . .  , j - 1) and (k, l = i + 1 . . . . .  n), 
respectively. Their determinants are the continuants uj-1 and On_i, respectively. It is easily shown that 
Cij remains unchanged if all elements ~t and T outside of ~:-1] and [Bn..i ] are replaced by zero. First, 
this is shown for yi_~ and hence also for Yi and then for the remaining elements. In each case one shows 
that in the expression for the determinant the coefficient of the element under consideration is zero. 
It follows that 

i-I 
C i j = ( - I ) i - J u j _ l o n _ i l " [ ~  ( i > j ;  j=l ..... n) 

~=j 

Let u0 = o0 = 1. Then this formula is also valid in the case when i = j (i -- 1 . . . . .  n). If i < j, then i 
and j  as well as 13 and T must be interchanged• With this formula the elements of A -1 are 

I(_l) i_~ u i _ #  ,,_ i i-i  

(A-z)~j = u. k=_ I~k 0 j)  

,i,- - ~'TIT k (i~<j) ~ (_l)i_i u, tun i "-I (J = 1 ..... n) (2.1) 

ua k=i 

Thus, A -1 is known as soon as the continuants are known. Expansion of the determinant ui by the ith 
column yields the second-order linear difference equation 

ul = (z iu i_ t  - 81_ lu i_2  ( i  = 2 . . . . .  n )  (2.2) 

where 8i = ~iTi ( i  = 1 . . . . .  n - 1) and with the initial conditions 

Uo = l, Ul =otl (2.3) 

The continuants ui (i = 0 . . . . .  n) are obtained by applying the same equation to the transpose of A 
about the secondary diagonal. Throughout this paper 8 i ¢ 0 (i --- 1 . . . . .  n - 1) is assumed. Under this 
condition no two successive continuants Uk and Uk+1 or Ok and Uk+l (k ~> 0) are zero. Equation (3) is 
the same for symmetric and for asymmetric matrices. 

3. T O E P L I T Z  M A T R I C E S  

In this section Eq. (2.2) for continuants is explicitly solved for tridiagonal matrices with perturba- 
tions. This is the case 13i -~ 13, ~/i m T (i  = 1 , . . . ,  n - 1 ) ,  (/,i ~ ~ ,  (i = 2 . . . .  , n - 1), <xl, % ~ a. From the 
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solution ui (i = 0 . . . . .  n) of Eq. (2.2) the continuants O i are obtained by interchanging al  and an. With 
8 = 13~' Eq. (2.2) takes the form 

= IIxui-I  - 6ui-2 (i = 2 . . . . .  n - 1) (3.1) 
ui [otu. l-~)u,, 2+(or  n _ot)u,,_l ( i=n)  

with initial conditions (2.3). In the range i =.2 . . . . .  n - 1 it has constant coefficients. In this range the 
equation has a solution of the form u i = Cq' (i = 0 . . . . .  n - 1). Substitution into Eq. (3.1) yields the 
characteristic equation 

q2_  a q  + ~i = 0 (3.2) 

In the case of different roots ql ~ q2 the general solution is ui = Clq~ + C2qi~ (i = 0 . . . . .  n - 1). The 
coefficients C1 and C2, determined by the initial conditions (2.3), are found to be C1 = [q~ + (al - a)]/  
(ql - qz) and CE = -[q2 + (al  - a)]/(ql - q2). Hence 

q~+~_q~+l + ( O q - i x ) ( q ~ - q i )  ( i = O , . .  n - l )  U i ----- ., 
ql - q2 

Eq. (5) then yields for un the expression 

(3.3) 

= q~- t (q l  +ixl  - i x X q ~  +otn - i x ) - q ~ - I ( q 2  +ixt  - o t ) ( q 2  +otn - i x )  
u. (3.4) 

ql - q2 

In the case when ql = qz = q = a/2 the general solution is U i = ( C  1 q- iC2)(a /2)  i (i = 0 . . . . .  n - 1). 
The initial conditions (2.3) yield C1 = 1, Ce = 2al /a  - 1. From this it follows that 

u i = (I + i ) q  i + i ( a  I - o t ) q  i-I (i = 0 ..... n - !) (3.5) 

Un = [q2 + n(q  + a 1 - ~)(q + ct~ - or) - (oq - ct)(ot, - a)]q "-2 (3.6) 

In the special case al  = a ,  = a Eqs (3.3) to (3.6) have the forms 

Iq~+l  __q~+l 

ui = ° i  = ~  q l - q 2  (qt ~ q 2 )  ( i = 0  ..... n) (3.7) 
t(1 + i )q  i (ql = q2 = q = ot 12 )  

These results are known from [2, 3]. In [1] the case ql = qe is not considered and the result for 
ql ~ q2 is misprinted. 

For real matrices the continuants (3.3)-(3.7) are real even if ql,2 are complex conjugate. In what follows 
real expressions will be developed for asymmetric matrices in the special case al  = an = a and for 
symmetric matrices in special cases with cq = an ~ a. 

Rea l  a symmet r i c  Toeplitz matr ices  

The matrix is persymmetric, whence it follows that ui = D i (i ---- 0 . . . . .  n )  and Eq. (2.1) takes the 
form 

I ( _ ~ ) i - j  Uj-lUn-i (i >~ j )  

( A - l  )ij = Un 

[ (-~t)  j - i  ui-jun-J (i <~ j )  
Un 

( j  = 1 . . . . .  n )  (3 .8)  

Without loss of  generality it will be assumed that the diagonal elements a of A are non-negative (the 
case tx < 0 is treated by inverting -A). In Eq. (3.7) three cases must be distinguished depending on 
whether Eq. (3.2) has two different real roots, a double root or complex conjugate roots. 

1. Di f f eren t  real  roots.  From Eq. (3.2) with a > 0 it follows that ql > 0, sign q2 = sign 8 and I q21 < ql. 
We define the real number 
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r = q...L = a - ~ -  45  (0 <l r I< 1; sign r = sign 5)  (3 .9)  
ql a + ~ - 4 8  

From Eq. (3.2) it follows that qlq2 = 8 and with this from Eq. (3.9) we have ql = qS/r. In these terms 
Eq. (3.7) is written in the form 

(~)i,2 l_ri+, 
ui= 1 - r  ( i = 0  ..... n) (3.10) 

2. Double root: q = a/2 = ,/a > o. With this, Eq. (3.7) becomes 

ui = 8i/2(1 + i) (i = 0 . . . . .  n) (3.11) 

3. Complex conjugate roots. In this case 48 - Ot 2 > 0 and, thus, also 8 > 0. Since a ~ 0 the real part is 
0. The absolute value is ~/8. By writing qi.2 = qe+-i~ we define the angle 

 ,12, 

Equation (3.7) has the form 

Uj = 5 j12 ei(j+l)¢ -- e-i(J+l)¢ = 5 jr2 sin[( j  + I)ll I] 
e i ~  - -  e-"* sin ~0 

Equations (3.10), (3.11) and (3.13) 
A: 

( j = O  . . . .  n) (3.13) 

together with (3.8) yield the final result for the inverse of 

( A - l ) q  = 

• { r'~(i-J +I)12 (-~>/-J'~'t, J (1- rJ)( l -  r "+l-' ) 

• . [  1 , ~ ( i - j + l ) 1 2  S(nn+, + ' - 0  

• ( l ~(i-j+l)/2 (_13),_jt~j sin(jg)sin[(n + 1 - i)q0] 
sin qlsin[(n + Dip] 

(a  2 > 45) 

(l~ 2 = 45) 

(a  2 < 45) 

(j = l ..... n; i>-j; a > O) 

(3.14) 

The expressions for i < j are obtained by interchanging i and j as well as 13 and y. A symmetric matrix 
is characterized by 6 = 13 ~ and 0 < r < 1. 

Real symmetric Toeplitz matrices with special perturbations 
In this case Eqs (3.3)-(3.6) apply. In some mechanical systems with a symmetric matrix the special 

case oil = a ,  = a + 13 is of particular interest. In what follows the more general case 

a I = a , , = a + o l l 3  (cq =+1 or -1) (3.15) 

is considered. The elements of the inverse matrixA -1 can be given forms similar to those in Eq. (3.14). 
Because of the symmetry and persymmetry Eq. (3.8) has the special form 

( A-I )ij = ( A-t )ji = (_~)i-j uj-lu,-i (j = 1 . . . . .  n; i >~ j)  (3.16) 
Un 

As in the previous section a >I 0 is assumed without loss of generality. We define an = sign 13 = ~ = 
ale~. First, Eqs (3.3) and (3.4) for real or complex roots ql * q2 are considered. S(nce qlq2 = f 12 we 
have 

a I - a  = a n - a  = at[i = al~l= oaiqlq2 

From this it follows that 
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i i _i+1 q~+l +O q~lq~(q I_q2)  t"i+~ _ i+~ 
q,  - - o q 2  )(4q, +°'4~2) %'/I  

/ / i  = = _ 
ql - q2 ql - q2 

i+,~ i+,~ 
= q l  - -  O q 2  (i = 0 . . . . .  n - 1 )  

q;- ' (q ,  +Oq~lq2 )2 -q ; - ' ( q2  +O q~lq2 )z ~ + 0 ~ 2  
U n ~ ~ .  

q , - q 2  ,¢%-I1- 0 ~ 2  (q~ - q~ ) 

1. Real roots ql ~ q2 are positive. Hence, the parameter r defined by Eq. (3.9) is in the range 0 < r < 1. 
Furthermore,  ql = 113 [r -1/2. This yields 

(1131y I - o r  i+~ ( i = 0  . . . . .  n - l )  (3.17) 
ui=t~r ) l_ffr ~ 

+~r ~ ( 1131 ) i (1 -  r") 1 (3.18) 
u,, =t~r~ ) 1 _Grj~ 

2. Complex roots. Again, Eq. (3.12) is applicable 

ql.2 =1131e±i*, ~P = arctg 

This yields 

tl1131 i s in [ ( /+  ~)q~] 

u, hl ,' costO'+, )m] 
[ cos(~ / 2) 

( o = + l )  

( 0  = -1 )  
( i = 0  . . . . .  n - l )  (3.19) 

['211]1" ctg(q~ / 2)sin nq~ (o = +1) 

u, = ~[_21~l,, tg(~p / 2)sinncp ( o = - 1 )  
(3.20) 

3. A double root requires a/2 = ] p I. We write A = cU2A* and consider the matrix A* first. It has the 
* = 2 + a, 13" = erl3 and the double root q 1. Eqs (3.5) and (3.6) reduce to elements et* = 2, ct~ = ~t, = 

u i = 1 + i ( 1 + ~ )  ( i = 0  . . . . .  n - l ) ,  u n = n ( l + G )  2 (3.21) 

With this the continuants of A are 

u i =l [31 i u~(i = l ..... n) 

With Eqs (3.17)-(3.21), Eq. (3.16) yields the final result for the inverse matrix 

I . __  . i-j  (i-j+l)12 (1 -Gr J -~ ) ( l -Orn - i+~)  
i -~  t--op) r (1-  r ) ( l -  rn) J 1 . . i- j  ( 2 j - 1 ) [ 2 ( n - i ) + l ]  (G=+I)  } 
"~(-'~P) 4n 

( A- l  )ij = ( A-I))i = A is singular (0 = - 1) 
1 . i- j  s in[(j-~))q~]sin[(n-i+~))q~] 

("-~P) sin ~o sin n~o 
I i-j cos[(j - (~))¢0] cos[(n - i + (~))cp 

(--ap) sin q~ sin ncp 

1 
(G = +1) [ 

(0  = --I) 

( a  2 > 4[32) 

(0~ 2 = 4132) 

(0~ 2 < 41~ 2) 

( j = l  . . . . .  n, i>~j; a > O )  

(3.22) 
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4. P E R I O D I C  T R I D I A G O N A L  M A T R I C E S  

The inversion of ap-periodic tridiagonal matrix requires the solution of the linear difference equation 
(2.2) with p-periodic coefficients ¢xi+p ~ ai, ~i+p ~ ~)i. According to Floquet's theorem it has at least 
one solution of the form 

ui =~'i+l¢ (ki+p = k i )  (4.1) 

with p-periodic coefficients. Substitution into Eq. (2.2) results in the equations 

8i- I  ~'i-I +Ogi~t'i--q~'i+l =0 ( i=1 ..... p; 80 =Sp)  (4.2) 
q 

This represents an eigenvalue problem with eigenvalues q and eigenvector components ;% . . . .  , Z,p_ 1. 
The special case up_l = 0 is solved first. From.(2.2) it follows. . that u.p +1 =. alUp_.= UlU e, Up,+2 = cte+2UpUl 
- 5p+lU +lUp = (ct2Ul - 51)u = U2Up etc Using the principle of mduct~on it is easny snown tlaat the 

• P _ . P .  . r " . .  . 

solution satisfying the prescribed lmtial condmons can be written m the form 

m ( m = 0 , 1 ,  • i = O ,  p - l )  (4 .3)  Ump+i = UiU p . . . , ,  . . . ,  

T h i s i s E q  (41)  with qP = up and ~i+1= ui/qi (i = O, , p - l )  Hence, u is one of the two roots of 
• . • . - -  • . . . . . . P . 

the quadratic equatmn. The other root does not appear because of the mltml condiUons. The continuants 
are independent of 6p. 

In the general case up-1 ~ 0 with ~p ¢ 0 we are free to choose Lp = 1. The case p = 2 with L2 = 1 
must be considered separately. Equations (4.2), after eliminating ~1 from the first equation, are then 

q4--(GtI(X2--81--82)q2 +8182 =0, ~'l = (q2 +82)/(qOtl) (4.4) 

The first of these two equations is the characteristic quadratic equation (quadratic for q2). 
In the general casep  > 2 Eqs (4.2) are written in the form 

-~1 /q  Ct2 --q • 0 

= " (4 .5)  

-St,_ 3 /q  ~p-2 q 0 

- -Sp-2/q ap_lllll~.p_l q 

8 
-p-i Lp_j + Otp - q~,l = 0 (4.6) 

q 

Let the asymmetric tridiagonal coefficient matrix of Eq. (4.5) be called.4. The matrices_A andA have 
in common the diagonal elements ¢ti and the products 8, --- ~i'[i (i = 1 . . . . .  p - 1) of the off-diagonal 
elements and, hence, also the continuants ui (i = 0 . . . . .  p - 1). The determinant is Up-1 ~ O. The  
continuants of the transpose of A about the secondary diagonal are called ~3 i (i = 1 . . . .  , p - 1). In 
addition ~-1 = 0 and 13 0 = 1 are defined. With Eq. (2.1) the inverse of A has the elements 

[qJ-' u'-Ivt'-'-I I'I~ljSk ( i F  j)  

(~-l)ij =1 /gp-i 

I q j- iui-Wp-j-I  (i<~J) 
t lap_ I 

(j = 1 .. . . .  p - 1) (4.7) 

With this Eq. (4.5) yields 

Z'i 5_.ep (A_l)i I +q(A-I)i .p -I f i (q p) q-i = = ( i  = i . . . . .  p )  
q Up_! 

(4.8) 
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with the abbreviation 

i - !  

f i (q  p) = ui_!q t' +bt,_i_ I I I S j  (i = 1 ..... p) (4.9) 
j=0 

This formula is valid also for i = p in which case it yields ~. = 1. The eigenvalue q itself is found from 
Eq. (4.6). Substitution of the expressions for ~.1 and ~,_~ yields, after simple rearrangements, the 
characteristic quadratic equation (quadratic for qP) 

q2t, _ (up - 5t, vp_2)qP + f i  ~ij = 0 (4 .10)  
1=1 

In deriving Eqs (4.8)-(4.10)p > 2 was assumed. However, in the casep = 2 they are identical with Eqs 
(4.4) so that they apply to arbitraryp > 1. The coefficient ofq p is 

^ ~. ,[  i~kl+...+kptvjl~,~j2 rv jp~kl l~k2. . .~)kp  
lap - - ~ p U p _  2 = L~ . - -~ I  , .h I 0. 2 . . .U .p  ~1 v 2  

with summation overjl . . . . .  jn, kl . . . . .  k. subject to jl + . . .  + j .  + kl + . . .  + kp = P,Je, ke = 0 or 1 
. . . k" P . p 

(l = 1 , . . .  ,P),Je =]e+l(modp)= ke+l(modp) = 0 f fke = 1 (l = 1 . . . . .  p) .  
This coefficient is invariant with respect to a cyclic permutation of ai and 8i (i = 1 . . . . .  p). This has 

the consequence that the continuants of the transpose of A about the secondary diagonal are calculated 
with the same roots q~ and ~ .  

In what follows the case ~ ,  q~ is considered. The roots qPl and q~ determine 2p quantities qk (k = 
1 , . . . ,  2p). For every coefficients Xik (i = 1 . . . .  , p) are defined by Eq. (4.8). With these quantities qk 
and Xit (Eq. 4.1) yields the general solution of the difference equation 

u,,w+i = "-'k'~i+t.k'tk = fi+i(q~)Ckq~ l'-I + e C "~'-~ = 
k = !  U p - I  = 

t, mp 1 ~ -l 
= c qz + Z 

/ ' ~p - I  k = l  p - I  k = p + l  

(m=0,  1 .... ; i = 0  ..... p -  1) 

The factors behind q~P and qT p are independent of m and i. They are abbreviated to A1 and A2. For 
fi+~(q p) Eq. (4.9) is substituted. This results in the expression 

l / )  / 1 u ' t '+i=Al  uiqf+uP-i-21~--o51 q ~ + A 2  u iq~+ut ' - i -2~  qrp 

(m=0,  l .... ; i = 0  ..... p - l )  

The constants A1 and Az are determined from the initial conditions (2.3). The result is A1 = -Az = 
1/(q p - qP). With this, the final formula for the continuants is obtained 

ui (q~m+,)p _ q(2m+,)p) + (q~np _ q2mp)o'p_i_ 2 l'I~=0 5j 
u,,,t,, i = ql e - q~ (4.11) 

(m=0,  1 .... ; i = 0  ..... p -  1) 

The derivation of Eqs (4.10) and (4.11) was based on the nonsingularity of,4 (Up_ 1 :~ 0). It can be shown, 
however, that in the singular case Up-1 = 0 Eq. (4.10) has the roots qPl --- Up and qP2 = -6pOp_2 and that 
with these roots (4.11) is identical with (4.3). Furthermore, Eqs (4.10) and (4.11) reduce to the forms 
of Eqs (3.2) and (3.7), respectively, ifp = 1 is substituted. Thus, Eqs (4.10) and (4.11) are valid for 
arbitrary p/> 1 if ~ ~ ~ .  

In what follows the solution for continuants is developed for the case q~ = q~. Only the case up-1 ~ 0 
need be considered since the case Up_l = 0 has been solved already. According to Floquet's theorem 
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the general solution of Eq. (2.2) can be written in the form 

Ui = [ C l ~ , i + l + C 2 ( i ~ , i + l + P i + l ) ] q  i ( i = O  . . . . .  n )  (4.12) 

Here, qP is the double root of Eq. (4.10) and ~,i÷~ (i = 0 , . . . .  , p - l )  are the corresponding periodic 
coefficients determined from Eqs (4.8) and (4.9). The quantitiespi+l (i = 0,. . . . .  p - l )  are unknown 
p-periodic coefficients. They are determined by substituting the expression ui = (i~.i÷l + Pi+l)q i into 
the difference equation (2.2). This results in the equations 

"~i-lPi-I + Ctiqpi - q2pi+l + i[-~i-I~'i-I 4- ( l l q ~ ,  i - q2~, i+ t ] = 

= otiq~, i - 28i_tki_ I (i = i ..... p) 

According to Eq. (4.2) the expression in square brackets is equal to zero. This enables us to rewrite 
the right-hand side. After division by q the equations become 

~i-I ~i-I Pi-I + ~iP i  -- qPi+t = -- ~'i-I + qk i+l  (i  = 1 . . . . .  p )  (4.13) 
q q 

The coefficient matrix is the same as in (4.2). It is singular since q is an eigenvalue. Its rank is p - 1 
since the [(p - 1) x (p - 1)]-submatrixA shown in Eq. (4.5) has the determinant Up-1 # O. It follows 
that only p - 1 equations are linearly independent and that we are free to choose pp = 1. 

The constants C1 and C2 of Eq. (4.12) are calculated from the initial conditions (2.3). The solution 
for C1 is 

alPl -q(P2 +~'2) Cl:  
q[~2Pl - ~'l (P2 + ~'2 )] 

This is equal to zero as is shown by Eq. (4.13) with i = 1. From this it follows that C2 = 1/pl and finally 

= ~(i~,i÷, U i + P i + l ) q  i ( i=O .. . . .  n) (4.14) 

Also this formula is valid in the casep = 1 in which it is identical with (3.7). Thus, the Eqs (4.10), (4.11) 
and (4.14) represent the complete solution for the continuants of A in the casep I> 1. The same equations 
yield the continuants of the transpose of A about its secondary diagonal. With ui and vi (i = 0 . . . . .  n) 
Eq. (2.1), finally, yields the elements of A -1. 

Approximations for  symmetric matrices with real roots 
In many practical applications the matrixA is symmetric and, furthermore, the roots q~ and q~ of the 

characteristic quadratic Eq. (4.10) are real. Their product is the free term in this equation. For a 
symmetric matrix this term is positive. It follows that the roots have the same signs. Let them be such 
that q~/~ < 1. In Eq. (4.11) terms with q2 in the numerator are negligible for all m > m0 for some 
sufficiently large m0. The smaller qPJ~ the smaller is m 0. The approximation is 

1 ^ i 
Ump+i = q• - q ~  (uiq ~ +op_i_2j_~I ° 5j)qt "w (re>m0; i = 0  ..... p - l )  

whence it follows that 
Uj_p I uj = q~P ( j  - p > mop) (4.15) 

From Eq. (2.1) it then follows that 
-I 

(A ) i , j -p  = (_l) p U j - l - p  f i  ~k (i >~ j )  
(A-I)ij uj-i ~=l 

With Eq. (4.15) this yields the approximation 

( A-j ) i j -p  I (A -I )ij = q (i >~ j ; j  - p > mop + 1) 

where q is the constant 

(4.16) 

(4.17) 
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( k i)__ 1 ) q('~--~ (1~1<1) q=(-l)Pql-V ilk=, ~k =(- l ) t ' s ign  q: ~k)1~q: (4.18) 

Here, the fact was used again that q~/q~ equals the free term of Eq. (4.110). Replacing in Eq. (4.17)p 
by m p  one finally obtains the approximation 

-I _ gl" ( A -I (A )i.)-oq~ )i.) ( i ~  j; j - m p > m o p + l )  (4.19) 

The same reasoning yields 

(A -j)i,j+n~p ~'qm(A-I)i/. (i<~ J; J + m p < n - m o p )  (4.20) 

These approximations are geometric progressions multiplied by p-periodic functions which are 
represented by the p elements (A-1)ii_k and (A-a)i~+k, respectively, (k = 0 . . . .  , p - 1). 

5. M A T R I C E S  W I T H  S U B M A T R I C E S  OF D I F F E R E N T  P E R I O D S  

In this section continuants of a tridiagonal matrixA are determined which has tridiagonal submatrices 
of different periods. It suffices to solve the following problem. For some v (v > 1) the continuants 
u~ . . . . .  uv have been calculated from given formulas and starting with eta, 13~, ~,~ the matrixA isp-periodic 
with p i> 1. It is required to obtain an explicit expression for the continuants ui (i > v) satisfying the 
difference equation 

UimO~iUi_ I --~i_lUi_2 ( i=  v + 2  .... ) (5.1) 

and given initial conditions uv-i and u~. 
Let Ui and V~ be the linearly independent solutions of Eq. (5.1) with the initial conditions U~_I = 1, 

Uv = 0 and V~-I = 0, V~ = 1, respectively. Then 

ui=uv_~Ui+uvVi ( i = v - I  .... ) (5.2) 

is the solution satisfying the initial conditions uv_l and uv. From Eq. (5.1) and from the initial conditions 
it follows that 

U~+~ =-a~, w~+2=-a~a~+2, u~+3=-a~(cx~+3c~+2-cS~+2), 

VV+I "=0~v+l, VV+2 =~V+2OLV+I --~v+l'"" 

The general formulas are 

Uv+ i =-6vU~*l, Vv+ i =u;_ t ( i=  1,2 .... ) (5.3) 

Here, u 7 is thejth continuant of the matrixA* which remains after deleting fromA the rows and columns 
1 . . . . .  v and uj** is thej th  continuant of the matrixA** which remains after deleting f romA the rows 
and columns 1 . . . . .  v + 1. The matricesA* andA** arep-periodic and both have the same characteristic 
roots qq and q~. Their continuants are given by Eq. (4.3) or (4.11) or Eq. (4.14) depending on which 
of the three cases applies. Equations (5.3) and (5.2) yield the desired explicit formula 

uv+ i = uvu i - uv_lSvui**._ I (i = 1, 2 .... ) (5.4) 

6. A P P L I C A T I O N S  TO M E C H A N I C A L  SYSTEMS 

Three-moment  equations for  multiply supported beams 
Figure l(a) shows a continuous beam on supports 0 , . . . ,  n + 1 and with spans 1 . . . . .  n + 1 (n > 2). 

The system is n times statically indeterminate. Figure l(b) shows an associated statically determinate 
system with revolute joints at the supports 1 . . . . .  n and with unknown moments 3'/1, • • •, Mn. The two 
systems are equivalent if the moments have such values that the derivative dw/dx of the deflection w(x) 
is continuous at the supports. This condition is expressed by the so-called three-moment equations 
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~ (a) 
t ,  , t,,÷ I 

.A. ZX A A A Ix 
O l Z n n,¢l 

• (b) 

O l (, n n + l  

Fig. 1. 

~i Mi_, + 211i + li+-..~l l Mi + ~ M i + l  =Qi,i+t 
k, [i /i+l ) /i+l 

(6.1) 

( i= l  ..... n; M o = Mn+ I =O) 

The quantity l i is the length of span i, I; is the moment of inertia of the cross section in span i and 
Qi, i+l is a term representing the loads on spans i and i + 1. 

In the special case of identical spans with li/Ii -- I/I the equations read 

Mi_ 1+4Mi + Mi+ l =Qi,i*ll l l ( i= l ..... n; M o = Mn+ i = 0 )  

The coefficient matrix is a symmetric Toeplitz matrix. The quadratic equation (3.2) has the real roots 
ql.2 = 2 _ ,/3. The elements of the inverse matrix are given by the first line in Eq. (3.14) with ~ = 13 = 1 

(A-])0 = (A-l)ji = (_~¢-~)i-j 1 "~- r (1 - r jl )(1_ r n+l- r n+l-i) (i >1 j )  

r =  (2 - ,vt'3) 2 -- 0.2682 

All the matrix elements except those in rows 1 and n and in columns 1 and n have the good approximation 

(A-l)O =(A-t)j i  --0,289(-0,268) i-j (i>~ j; i , j ~  l,n) 

The matrix elements (1, n) and (n, 1) have the correction factor (1 - 02 ~ 0.86 and all other elements 
of rows 1 and n and of columns 1 and n have the correction factor (1 - r) --~ 0.93. 

As another example, a beam with constant cross section and with three periodically repeated span 
lengths ll = l, 12 = al and 13 = bl is considered. After multiplication of Eq. (6.1) by I/l the coefficient 
matrix is symmetric and periodic with period p = 3 and with parameters 

oq = 2(1 + a ) ,  ¢t 2 = 2 ( a  + b) ,  ¢t 3 = 2 ( b  + 1), [~l = a ,  132 = b, 1~3 = 1 

Fig. 2. 
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The characteristic equation (4.10) is 

q6 _ 213(a + b)(l + a + b + ab) + 2ab]q 3 + a2b 2 = 0 

Its roots q3 and q~ are real, positive and different from one another. This follows from the fact that 
their sum, their product as well as the discriminant of the characteristic equation is positive. The 
continuants are calculated from Eq. (4.11) with 

{ 1 ( i  = 0 )  

u i =  aj , ( i= l )  , 
~la2 - 6 2 (i = 2) 

Forced vibrations o f  chains o f  bodies 

=1~01~3 (i=1) Oe_i_2j~=o 8j 2 2 (i = 2) 

Figure 2 shows a chain of n bodies with masses ml . . . . .  m~ which are constrained to move along a 
horizontal support. The bodies and the support are interconnected by two groups of springs and by 
two groups of dampers. One group of springs has stiffnesses k o , . . . ,  kn and the other group has stiffnesses 
k~ . . . .  , k*n. The damping constants are b0 . . . . .  b, and b~ . . . . .  b~, respectively. When the system is 
in equilibrium without external forces the springs may be pre-stressed. Let xj be the horizontal 
displacement of bod~j  from this equilibrium position. The bodies are subject to in-phase harmonic 
excitation forces Fie '~  with a single excitation frequency f~ and with arbitrary real amplitudes F~ (j = 

• " D . /  • • • J 

1 . . . . .  n). The steady response lsxj(t) = X f  ~ (j = 1 . . . . .  n)  where Xj is the complex amphtude of 
bodyj.  It is required to calculate these amplitudes. 

Let m 0 and k0 be a reference mass and a reference spring constant, respectively. With them, we define 

• kj , k~ 
(02= k o ,  x=tOot, p . j = m j ,  c j = - -  c j =  

m o mo ko'  ko 

b*. 
2Di bj 2D~ = ' , a 

This leads to the normalized equations of motion (the prime denotes d/d~) 

g : j ' -  2 o j _ : ; _ ,  + 2(n;. + nj_,  + o j ) x ;  - 2 D : } ÷ ,  - 

-cj_~xj_~ + (c~i + cj_~ + c~)xj - cjxj+t = (I / ~)F:e ~ 

( j = l  ..... n; x o = x,+l - 0 )  

Substitution ofxj(~) = X ~  ~ (j = 1 . . . . .  n) produces a system of linear equations for the desired stationary 
amplitudes. Its matrix form is AX = (1/ko)F with a symmetric, tridiagonal coefficient matrix A having 
the complex parameters 

O[j = --~£jl] 2 + (C; + Cj_ 1 + Cj+ l ) + i2~(D~ + Dj_ I + Dj+ I ) (j = 1 ..... n) 

~ j = - c j - i E D j ~ ,  8 j = ~  ( j = l  ..... n - l )  

They are p-periodic (p/> 1) if the masses, stiffnesses and/or damper constants are p-periodic. Explicit 
results for the inverse elements are given only for an undamped system with identical masses (mj =- 
m), with k0 = kn = 0 and with two groups of identical stiffnesses: kj - k (j  = 2 , . .  , n - 1), k* -~ k* 

* * * = 1 . . . . .  n). With ( j  = 1 . . . . .  n). Choosing m0 = m and k0 = k we get ~tj - 1, cj - k /k  = c, c~ - 1 ( j"  : " 
this the matrixA is a symmetric Toeplitz matrix with perturbations. Its parameters are ct = 1 - 1] 2 + 
2c, 13 = 7 = -c  and oq = ct + 13. This is the case of Eq. (3.15) with O" 1 = 1. The parameters r and cp 
defined by Eqs (3.9) and (3.12) are 

_ l - t +  
r ( ' q , C ) - l - ~ + ,  tp01,c)=arctg~_ (0<tP~<=/2) (6.2) 

~+ = 4-I-(I - I] 2)(I - i]2 + 4c)/II - ~2 + 2ci 
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The inverse matrix is given by Eq. (3.22) 

(A-t)U = (A-I)ji = 

_1 ( ~ ) i _ j + l  (1 + rJ-)~)(1 + r n-i+)~) 

c (1 - r)(1 - r n) 
A is singular 
1 cos[(j - ~ 0 ]  cos[(n - i + ~)91 
c sin ~0 sin ntp 
I (_l)i_j+ I sin[(j - J6)t~o] sin[(n - i + J6)9] 
c sin 9 sin nq~ 
-1 (2j - l)[2(n - i)+ 1] 
c 4n 

1 r i-j+l _ ( _ , ~ )  (! - r J - ~ ) ( l  - r n-i+~) 

c (1 - r)(1 - r n) 

(112 < 1) 

(rl 2 = 1) 

(1 < 1"12 < 1 + 2c) 

(1 + 2c < ,q2 < 1 + 4c) 

(.q2 = 1 + 4c) 

(112 > 1 + 4c) 

( j = l  . . . . .  n, i >- j )  

The system has n eigenfrequencies given by rl = i and by those values of 11 for which sin ntp(rl, c) = 0. 
The solution is of interest also in the static case, i.e. for rl = 0. In this case, the body masses and dampers 
do not play any role. In the equations they are set equal to zero. The springs can be arbitrary elastic 
structures. Eq. (6.2) becomes 

r = {"~ l + 4 c  1) 2 

, 4 1 + 4 c : 1  

whence it follows that 1/c = (1 - ~[r)2/~r. With these expressions the inverse elements are functions of 
r, i and j only. 

Another elastic system under static loading is shown in Fig. 3. It consists of identical elastic bodies 
labelled 1, 3 . . . . .  n - 1 and of identical springs (of stiffness k) with attachment points 0, 1 . . . . .  
n + 1. External forces Fi applied to the points i = 1, 2 , . . . ,  n cause static displacements xi of these 
points. These displacements are to be calculated. The bodies can have other forms than those shown 
in the figure. For an individual body the stiffness matrix K is given. It relates the displacements xi and 
x/+l to the forces R i and Ri+ 1 acting at the same points 

H K I I K I 2 ~  xi II = I~i+11 (6.3) 
x'~zr2zll IIx~+~ll 

The element/(12 is negative, zero or positive depending on the shape of the body. In what follows K12 
, 0 is assumed since otherwise the bodies are uncoupled. 

The forces acting on body i (i = 1, 3 . . . .  , n - 1) are Ri = Fi - k(xi -x i -1)  at point i and Ri+ 1 = El+ 1 

+ k(xi+ 2 -Xi+l) at point i + 1. This is substituted into Eq. (6.3) 

Fig. 3. 
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H Xi-1 

0 Ki2 k +/(22 -k  F/+! 

( i=1 ,3  ..... n - l ;  xo=xn+ I = 0 )  

After division byk  all pairs of equations are combined in the matrix equationAx = (1/k)F. The symmetric 
coefficient matrixA has per iodp  = 2 and the parameters txl = 1 + Kll/k > O, (I. 2 = 1 + g22/k > O, ~1 
= K12/k (< 0 or > 0) and DE -- --1. The characteristic Eq. (4.4) is 

q4 _[(Kil + K22) I k +(KIIK22 - K~2)Ik2]q 2 +(KI2 / k) 2 = 0 

Its roots q2 and q2 z are real, positive and different from one another. Hence, the approximations (4.19) 
and (4.12) are applicable. Equation (4.11) yields the positive continuants 

+ 2. 2,.] /(  2 _~[( l+qt2)ql2, . - (  1 q2)q2 q l - q ~ )  (i=O) 
u2,.+i-[Otl[q21'm+l)- ~2"2t'+1)] / (q2 _ q2) ( i=1)  

(m =0,1  .... ) 

The continuants o n + ,  of the transpose about the secondary diagonal are the same expressions with ot 2 
instead of  t~l. With the quantities Eq. (2.1) yields the elements of the inverse matrix. If K12 < 0 then 
all elements o fA -1 are positive. IfK12 > 0 then all diagonal elements o fA -1 are positive, and in each 
row and in each column the sign distribution is [ . . .  + + - - + + - - ...]. These sign distributions were 
to be expected by simple physical reasoning. 
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